Tracking an Auto-Regressive Process with Limited Communication per Unit Time
نویسندگان
چکیده
منابع مشابه
Modeling Time Series With Auto-Regressive Markov Models
It reviews the theory of Hidden Filter Hidden Markov Models and presents an extension, Mixed State Hidden Markov Models, developed jointly by Andrew Fraser and myself under his supervision. This manuscript version has only trivial differences from the original.
متن کاملAuto-regressive modeling of shadowing for RSS mobile tracking
In this paper, we consider the tracking of mobile terminals based on the received signal strength (RSS) measured from several base stations. The spatial correlation of the random shadowing is exploited in order to improve the position tracking. We define an auto-regressive (AR) model of the temporal evolution of the shadowing. This model allows for performing a joint tracking of the position an...
متن کاملPractical generation of video textures the auto-regressive process
Recently, there have been several attempts at creating ‘video textures’, that is, synthesising new (potentially infinitely long) video clips based on existing ones. One method for achieving this is to transform each frame of the video into an eigenspace using Principal Components Analysis so that the original sequence can be viewed as a signature through a low-dimensional space. A new sequence ...
متن کاملPractical Generation of Video Textures using the Auto-Regressive Process
Recently, there have been several attempts at creating ‘video textures’, that is, synthesising new (potentially infinitely long) video clips based on existing ones. One way to do this is to transform each frame of the video into an eigenspace using Principal Components Analysis so that the original sequence can be viewed as a signature through this low-dimensional space. A new sequence can be g...
متن کاملCICAAR: Convolutive ICA with an Auto-regressive Inverse Model
We invoke an auto-regressive IIR inverse model for convolutive ICA and derive expressions for the likelihood and its gradient. We argue that optimization will give a stable inverse. When there are more sensors than sources the mixing model parameters are estimated in a second step by least squares estimation. We demonstrate the method on synthetic data and finally separate speech and music in a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Entropy
سال: 2021
ISSN: 1099-4300
DOI: 10.3390/e23030347